• 十九大报告中有哪些民生亮点?
  • 出售观致、凯翼股权,奇瑞发布捷途对标宝骏
  • 十堰,湖北最美丽的城市,一生一定要去一次!
  • 赚了1亿倍的车建新,为什么颠倒黑白说自己是富二代?
  • 发行趋严 2018年公司债将迎明显“瘦身”
  • 海南航空出新规:宠物可以进客舱 统一收费800元每只
  • 【监察体制改革试点进行时】12项调查措施:在细化中规范 在实践中提升————头条——中央纪委监察部网站
  • 江西| 鹰潭龙虎山大上清宫遗址考古取得大收获
  • 60后法律人成省级政法领导“主力”
  • 澳大利亚华裔少年高考近满分 获华裔富商资助
  • 《旅行青蛙》走红,填补了玩家的哪扇情感空窗?
  • [学习时报]“ 放管服 ” 改革 :开启社会组织发展新篇章
  • 中国外交情系人类命运共同体
  • 乳腺癌居女性恶性肿瘤发病首位,专家建议“控制减肥”
  • 推进事业编制挖潜创新服务经济社会发展
  • 亚美娱乐app

    当前位置: 亚美娱乐app » Research Journals » Cell » Cell:用CRISPR构建衰老研究模型

    Cell:用CRISPR构建衰老研究模型

    摘要 : 由于现有的脊椎动物模型寿命相对较长,而短寿的无脊椎动物又缺乏人类的一些关键特征,研究衰老及其相关的疾病一直是一个挑战。现在斯坦福大学的科学家们找到了两者兼顾的解决方案,他们利用一种基因组编辑工具箱构建出了可在自然短寿的非洲青鳉鱼中研究衰老的平台。

    亚美娱乐app www.yynm360.com  

    由于现有的脊椎动物模型(例如小鼠)寿命相对较长,而短寿的无脊椎动物(例如酵母和线虫)又缺乏人类的一些关键特征,研究衰老及其相关的疾病一直是一个挑战。

    现在斯坦福大学的科学家们找到了两者兼顾的解决方案,他们利用一种基因组编辑工具箱构建出了可在自然短寿的非洲青鳉鱼(African turquoise killifish)中研究衰老的平台。研究人员希望这些鱼将成为了解、预防及治疗老年疾病的一个有价值的新模型。他们将这项研究工作发布在2月12日的《细胞》(Cell)杂志上。

    非洲青鳉鱼生活在津巴布韦和莫桑比克随干旱季节消失的临时水塘中。因此不同于生活在持久存在的水域中的同类,它们进化为只有4-6个月的短寿命,这使得它们成为了衰老研究极好的候选生物。然而直到现在都少有可用于研究它们的遗传工具。

    利用近期开发的基于CRISPR/Cas的基因组编辑技术,研究人员构建出了在实验中使用这种鳉鱼所需的平台。论文的资深作者、斯坦福大学医学院遗传学教授Anne Brunet博士说:“这意味着可以了解它全部的基因,并以各种方式来操控或突变它们,从而更好地认识衰老及老年疾病。”

    一些鳉鱼突变体已经在衰老和疾病研究中显示出应用前景。论文的主要作者、遗传学博士后研究人员Itamar Harel 说:“我们的其中一种鳉鱼突变体以一种快速的方式重演出了因端粒缺陷所导致的一种人类疾病:先天性角化不良(Dyskeratosis congenita)。这些鳉鱼突变体像人类一样具有血液及肠道缺陷,并显示一些生育问题。”

    现在研究小组生成了快速操控鳉鱼的工具,就可以利用这种模式生物来筛查延缓或逆转衰老及年龄相关疾病的基因和药物。

    Brunet 博士说:“了解基因组编码寿命一类的复杂特征的机制是现代生物学的最大挑战之一。我们构建出来的这一模式系统、工具及其资源可以帮助应对这一挑战。”

    原文链接:A Platform for Rapid Exploration of Aging and Diseases in a Naturally Short-Lived Vertebrate

    Aging is a complex process that affects multiple organs. Modeling aging and age-related diseases in the lab is challenging because classical vertebrate models have relatively long lifespans. Here, we develop the first platform for rapid exploration of age-dependent traits and diseases in vertebrates, using the naturally short-lived African turquoise killifish. We provide an integrative genomic and genome-editing toolkit in this organism using our de-novo-assembled genome and the CRISPR/Cas9 technology. We mutate many genes encompassing the hallmarks of aging, and for a subset, we produce stable lines within 2–3 months. As a proof of principle, we show that fish deficient for the protein subunit of telomerase exhibit the fastest onset of telomere-related pathologies among vertebrates. We further demonstrate the feasibility of creating specific genetic variants. This genome-to-phenotype platform represents a unique resource for studying vertebrate aging and disease in a high-throughput manner and for investigating candidates arising from human genome-wide studies.

    来源: Cell 浏览次数:107

    我们欢迎生命科学领域研究成果、行业信息、翻译原创、实验技术、采访约稿。-->投稿

    RSS订阅 | 亚美娱乐app | 粤ICP备11050685号-3 ?2011-2014 生物帮 Cell  All rights reserved.